

JavaScript is disabled on your browser.

Skip navigation links

	Overview
	Package
	Class
	Use
	Tree
	Deprecated
	Index
	Help

	Prev Class
	Next Class

	Frames
	No Frames

	All Classes

	Summary:
	Nested |
	Field |
	Constr |
	Method

	Detail:
	Field |
	Constr |
	Method

edu.harvard.hul.ois.jhove.module.pdf

Class Parser

	java.lang.Object
	
	edu.harvard.hul.ois.jhove.module.pdf.Parser

	

public class Parser
extends Object

The Parser class implements some limited syntactic analysis
for PDF. It isn't by any means intended to be a full
parser. Its main job is to track nesting of syntactic
elements such as dictionary and array beginnings and
ends.

	

	

Constructor Summary

Constructors 	Constructor and Description
	Parser(Tokenizer tokenizer)
Constructor.

	

Method Summary

All Methods Instance Methods Concrete Methods 	Modifier and Type	Method and Description
	int	getArrayDepth()
Returns the number of array starts not yet matched by
array ends.

	int	getDictDepth()
Returns the number of dictionary starts not yet matched by
dictionary ends.

	Set<String>	getLanguageCodes()
Returns the language code set from the Tokenizer.

	Token	getNext()
Gets a token.

	Token	getNext(Class<?> clas,
String errMsg)
A class-sensitive version of getNext.

	Token	getNext(long max)
Gets a token.

	long	getOffset()
Returns the current offset into the file.

	boolean	getPDFACompliant()
Returns false if either the parser or the tokenizer has detected
non-compliance with PDF/A restrictions.

	String	getWSString()
Returns the Tokenizer's current whitespace string.

	PdfArray	readArray()
Reads an array.

	PdfDictionary	readDictionary()
Reads a dictionary.

	PdfObject	readObject(boolean allowPseudo)
Reads an object.

	PdfObject	readObjectDef()
Reads an object definition, from wherever we are in the stream to
the completion of one full object after the obj keyword.

	PdfObject	readObjectDef(Numeric objNumTok)
Reads an object definition, given the first numeric object, which
has already been read and is passed as an argument.

	void	reset()
Clear the state of the parser so that it can start
reading at a different place in the file.

	void	resetLoose()
Clear the state of the parser so that it can start
reading at a different place in the file and ignore
any nesting errors.

	void	scanMode(boolean flag)
If true, do not attempt to parse non-whitespace delimited tokens, e.g.,
literal and hexadecimal strings.

	void	seek(long offset)
Positions the file to the specified offset, and
resets the state for a new token stream.

	void	setEncrypted(boolean encrypted)
Tells this Parser, and its Tokenizer, whether the file
is encrypted.

	void	setObjectMap(Map<Long,PdfObject> objectMap)
Set the object map on which the parser will work.

	void	setPDFACompliant(boolean pdfACompliant)
Set the value of the pdfACompliant flag.

	

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

	

	

Constructor Detail

	
Parser

public Parser(Tokenizer tokenizer)

Constructor. A Parser works with a Tokenizer that feeds
it tokens.

	Parameters:
	tokenizer - The Tokenizer which the parser will use

	

Method Detail

	
setObjectMap

public void setObjectMap(Map<Long,PdfObject> objectMap)

Set the object map on which the parser will work.

	
reset

public void reset()

Clear the state of the parser so that it can start
reading at a different place in the file. Clears the
stack and the dictionary and array depth counters.

	
resetLoose

public void resetLoose()

Clear the state of the parser so that it can start
reading at a different place in the file and ignore
any nesting errors. Sets the
stack and the dictionary and array depth counters to
a large number so that nesting exceptions won't be thrown.

	
getNext

public Token getNext()
 throws IOException,
 PdfException

Gets a token. Uses Tokenizer.getNext, and keeps track
of the depth of dictionary and array nesting.

	Throws:
	IOException
	PdfException

	
getNext

public Token getNext(long max)
 throws IOException,
 PdfException

Gets a token. Uses Tokenizer.getNext, and keeps track
of the depth of dictionary and array nesting.

	Parameters:
	max - Maximum allowable size of the token
	Throws:
	IOException
	PdfException

	
getNext

public Token getNext(Class<?> clas,
 String errMsg)
 throws IOException,
 PdfException

A class-sensitive version of getNext. The token
which is obtained must be of the specified class
(or a subclass thereof), or a PdfInvalidException with
message errMsg will be thrown.

	Throws:
	IOException
	PdfException

	
getDictDepth

public int getDictDepth()

Returns the number of dictionary starts not yet matched by
dictionary ends.

	
setEncrypted

public void setEncrypted(boolean encrypted)

Tells this Parser, and its Tokenizer, whether the file
is encrypted.

	
getArrayDepth

public int getArrayDepth()

Returns the number of array starts not yet matched by
array ends.

	
getWSString

public String getWSString()

Returns the Tokenizer's current whitespace string.

	
getLanguageCodes

public Set<String> getLanguageCodes()

Returns the language code set from the Tokenizer.

	
getPDFACompliant

public boolean getPDFACompliant()

Returns false if either the parser or the tokenizer has detected
non-compliance with PDF/A restrictions. A value of true
is no guarantee that the file is compliant.

	
setPDFACompliant

public void setPDFACompliant(boolean pdfACompliant)

Set the value of the pdfACompliant flag. This may be used to
clear previous detection of noncompliance. If the parameter
has a value of true, the tokenizer's pdfACompliant
flag is also set to true.

	
readObjectDef

public PdfObject readObjectDef()
 throws IOException,
 PdfException

Reads an object definition, from wherever we are in the stream to
the completion of one full object after the obj keyword.

	Throws:
	IOException
	PdfException

	
readObjectDef

public PdfObject readObjectDef(Numeric objNumTok)
 throws IOException,
 PdfException

Reads an object definition, given the first numeric object, which
has already been read and is passed as an argument. This is called
by the no-argument readObjectDef; the only other case in which it
will be called is for a cross-reference stream, which can be distinguished
from a cross-reference table only once the first token is read.

	Throws:
	IOException
	PdfException

	
readObject

public PdfObject readObject(boolean allowPseudo)
 throws IOException,
 PdfException

Reads an object. By design, this reader has a number
of limitations.
	It doesn't retain the contents of streams
	It doesn't recognize a stream when it's pointing at
the stream's dictionary; it will just read the
dictionary

Functions which it uses may call it recursively to build up structures.
If it encounters a token inappropriate for an object start, it
throws a PdfException on which getToken() may be called to retrieve
that token.

	Throws:
	IOException
	PdfException

	
readArray

public PdfArray readArray()
 throws IOException,
 PdfException

Reads an array. When this is called, we have already read the
ArrayStart token, and arrayDepth has been incremented to reflect this.

	Throws:
	IOException
	PdfException

	
readDictionary

public PdfDictionary readDictionary()
 throws IOException,
 PdfException

Reads a dictionary. When this is called, we have already read the
DictionaryStart token, and dictDepth has been incremented to reflect this.
Only for use in this special case, where we're picking up
a dictionary in midstream.

	Throws:
	IOException
	PdfException

	
getOffset

public long getOffset()

Returns the current offset into the file.

	
seek

public void seek(long offset)
 throws IOException,
 PdfException

Positions the file to the specified offset, and
resets the state for a new token stream.

	Throws:
	IOException
	PdfException

	
scanMode

public void scanMode(boolean flag)

If true, do not attempt to parse non-whitespace delimited tokens, e.g.,
literal and hexadecimal strings.

	Parameters:
	flag - Scan mode flag

Skip navigation links

	Overview
	Package
	Class
	Use
	Tree
	Deprecated
	Index
	Help

	Prev Class
	Next Class

	Frames
	No Frames

	All Classes

	Summary:
	Nested |
	Field |
	Constr |
	Method

	Detail:
	Field |
	Constr |
	Method

Copyright © 2008–2017 The Open Preservation Foundation. All rights reserved.

